Refine Your Search

Topic

Search Results

Standard

Laboratory Testing Machines for Measuring the Steady State Force And Moment Properties of Passenger Car Tires

2012-08-31
CURRENT
J1106_201208
This Recommended Practice describes some basic design requirements and operational procedures associated with equipment for laboratory measurement of tire force and moment properties of the full range of passenger car tires. These properties must be known to establish the tire's contribution to vehicle dynamic performance. Many factors influence laboratory tire force and moment measurements. This Recommended Practice was compiled as a guide for equipment design and test operation so that data from different laboratories can be directly compared and applied to vehicle design and tire selection problems. It is recognized that laboratory measurements define performance in a controlled and idealized situation that may not correspond to conditions encountered in a vehicle's operating environment. Several decades of testing experience in different laboratories indicates, however, that these tests can provide a very useful bench mark for evaluation of tire performance.
Standard

LABORATORY TESTING MACHINES AND PROCEDURES FOR MEASURING THE STEADY STATE FORCE AND MOMENT PROPERTIES OF PASSENGER CAR TIRES

1975-01-01
HISTORICAL
J1107_197501
This Information Report presents background and rationale for SAE Recommended Practice J1106, Laboratory Testing Machine and Procedures for Measuring the Steady Force and Moment Properties of Passenger Car Tires. The purpose of SAE J1106 is to define standards for equipment design and test procedures so that data from different laboratories can be directly compared. Whereas such standardization is not a requirement for testing associated with tire development, it is necessary in the context of vehicle design and tire selection problems. The basic approach employed in developing SAE J1106 was to consolidate and document existing technology as embodied in equipment and procedures currently employed for routine tire evaluations. Equipment and procedures whose current use is restricted to research applications were not considered. Research experience is discussed in this Information Report, however, to the extent deemed necessary to provide background and rationale for SAE J1106.
Standard

LABORATORY TESTING MACHINES FOR MEASURING THE STEADY STATE FORCE AND MOMENT PROPERTIES OF PASSENGER CAR TIRES

1975-01-01
HISTORICAL
J1106_197501
This Recommended Practice describes some basic design requirements and operational procedures associated with equipment for laboratory measurement of tire force and moment properties of the full range of passenger car tires. These properties must be known to establish the tire's contribution to vehicle dynamic performance. Many factors influence laboratory tire force and moment measurements. This Recommended Practice was compiled as a guide for equipment design and test operation so that data from different laboratories can be directly compared and applied to vehicle design and tire selection problems. It is recognized that laboratory measurements define performance in a controlled and idealized situation that may not correspond to conditions encountered in a vehicle's operating environment. Several decades of testing experience in different laboratories indicates, however, that these tests can provide a very useful bench mark for evaluation of tire performance.
Standard

Laboratory Testing Machines and Procedures for Measuring the Steady State Force and Moment Properties of Passenger Car Tires

2012-08-31
CURRENT
J1107_201208
This Information Report presents background and rationale for SAE Recommended Practice J1106, Laboratory Testing Machine and Procedures for Measuring the Steady Force and Moment Properties of Passenger Car Tires. The purpose of SAE J1106 is to define standards for equipment design and test procedures so that data from different laboratories can be directly compared. Whereas such standardization is not a requirement for testing associated with tire development, it is necessary in the context of vehicle design and tire selection problems. The basic approach employed in developing SAE J1106 was to consolidate and document existing technology as embodied in equipment and procedures currently employed for routine tire evaluations. Equipment and procedures whose current use is restricted to research applications were not considered. Research experience is discussed in this Information Report, however, to the extent deemed necessary to provide background and rationale for SAE J1106.
Standard

RESIDUAL ALIGNING MOMENT TEST

1994-08-01
HISTORICAL
J1988_199408
This SAE Recommended Practice describes the determination of tire pull force properties for an uninclined tire (SAE J670e) on a laboratory flat surface tire force and moment machine. It is suitable for accurately determining pull forces and residual aligning moments for passenger and light-truck tires. These properties are important determinants of vehicle trim (See section 2.1.2). They describe steady-state, free-rolling pull effects ascribable to tires. The test method described in this document is suitable for comparative evaluation of tires for research and development purposes. The method is also suitable for modeling when followed carefully.
Standard

Tire Pressure Monitoring Systems for Light Duty Highway Vehicles

2019-12-10
CURRENT
J2657_201912
To establish overall performance guidelines, test methods, and minimum performance levels for a TPMS. The system shall visually indicate the tire inflation pressure status. These guidelines include, but are not limited to: a A test methodology for a device which monitors tire inflation, that is located in/on the tire/wheel environment. b Recommended performance guidelines for a TPMS.
Standard

Wet or Dry Pavement Passenger Car Tire Peak and Locked Wheel Braking Traction

2018-02-15
CURRENT
J345_201802
This SAE Recommended Practice defines the best known techniques for evaluating peak and locked wheel braking traction. It covers an important phase of tire braking traction, namely, the wet or dry pavement straight ahead conditions. However, this is but a small portion of the whole field of tire traction. As test procedures are established for other phases of this complex study, additional supplementary procedures will be written. A discussion of this entire subject is contained in Appendix B to this recommended practice.
Standard

WET OR DRY PAVEMENT PASSENGER CAR TIRE PEAK AND LOCKED WHEEL BRAKING TRACTION

1968-06-01
HISTORICAL
J345_196806
This SAE Recommended Practice defines the best known techniques for evaluating peak and locked wheel braking traction. It covers an important phase of tire braking traction, namely, the wet or dry pavement straight ahead conditions. However, this is but a small portion of the whole field of tire traction. As test procedures are established for other phases of this complex study, additional supplementary procedures will be written. A discussion of this entire subject is contained in Appendix B to this recommended practice.
Standard

WET OR DRY PAVEMENT PASSENGER CAR TIRE PEAK AND LOCKED WHEEL BRAKING TRACTION

1969-03-01
HISTORICAL
J345_196903
This SAE Recommended Practice defines the best known techniques for evaluating peak and locked wheel braking traction. It covers an important phase of tire braking traction, namely, the wet or dry pavement straight ahead conditions. However, this is but a small portion of the whole field of tire traction. As test procedures are established for other phases of this complex study, additional supplementary procedures will be written. A discussion of this entire subject is contained in Appendix B to this recommended practice.
Standard

WET OR DRY PAVEMENT PASSENGER CAR TIRE PEAK AND LOCKED WHEEL BRAKING TRACTION

1969-03-01
HISTORICAL
J345A_196903
This SAE Recommended Practice defines the best known techniques for evaluating peak and locked wheel braking traction. It covers an important phase of tire braking traction, namely, the wet or dry pavement straight ahead conditions. However, this is but a small portion of the whole field of tire traction. As test procedures are established for other phases of this complex study, additional supplementary procedures will be written. A discussion of this entire subject is contained in Appendix B to this recommended practice.
Standard

ROLLING RESISTANCE MEASUREMENT PROCEDURE FOR PASSENGER CAR TIRES

1984-06-01
HISTORICAL
J1269_198406
This recommended practice applies to the laboratory measurement of rolling resistance of pneumatic passenger car tires designed primarily for normal highway service. The procedure applies only to the steady-state operation of free-rolling tires at zero slip and inclination angles; it includes the following three basic methods:
Standard

ROLLING RESISTANCE MEASUREMENT PROCEDURE FOR PASSENGER CAR AND LIGHT TRUCK TIRES

1985-11-01
HISTORICAL
J1269_198511
This Recommended Practice applies to the laboratory measurement of rolling resistance of pneumatic passenger car and light truck tires. The procedure applies only to the steady-state operation of free-rolling tires at zero slip and inclination angles; it includes the following three basic methods:
X